
Network Protocol Tutorial

Target: Lightstreamer Generic Client Protocol v. 6.0.2
Last updated: 07/10/2016

Table of contents

1 INTRODUCTION..4

2 GENERAL WORKFLOW...5
2.1 HTTP Requests..5

2.1.1 HTTP vs. HTTPS...5
2.1.2 GET method vs. POST method..5
2.1.3 Lightstreamer Server behind a Load Balancer...5

2.2 Subscriptions and unsubscriptions...6
2.3 Stream Connection, Control Connections and Polling connections........................6
2.4 Data reception workflows...7

2.4.1 Basic workflow...7
2.4.2 Double subscription..8
2.4.3 Field schema change..9

2.5 Content-Length management..10
2.6 External Snapshots...12

3 SUBSCRIPTION MANAGEMENT..15
3.1 Basic concepts...15

4 THE TEXT MODE PROTOCOL...16
4.1 Creating the Stream Connection..16
4.2 Binding to an existing Session...18
4.3 Control connections..20

4.3.1 Subscription Control Connections...20
4.3.2 Item Groups and Field Schemas..22
4.3.3 Subscription reconfiguration Control Connections...23
4.3.4 Session constraints Control Connections..23
4.3.5 Asynchronous request for session rebind Control Connections...........................24
4.3.6 Session asynchronous destroy Control Connections..25
4.3.7 Batching of Control Requests..25

4.4 Sending Messages..26
4.4.1 Synchronous version...26
4.4.2 Asynchronous version...26

4.5 Push Contents..28
4.5.1 Update messages...28
4.5.2 End-of-Snapshot messages...30
4.5.3 Overflow messages..30
4.5.4 Asynchronous Send Message outcome messages...30
4.5.5 Probe messages...31
4.5.6 End messages..31
4.5.7 Loop messages..32

- 2 -

4.5.8 Push error messages..33

5 TESTS AND EXAMPLES..34
5.1 Test environment...34
5.2 Table (i.e. Subscription) management..35

5.2.1 Basic workflow ... 36
5.2.2 Double subscription..37
5.2.3 Field schema change..38
5.2.4 Snapshot synchronization...40
5.2.5 Multiple subscriptions of the same item...41

- 3 -

1 Introduction

If you use a Client Library (e.g. SDK for Web Clients, SDK for .NET Clients, etc.) to develop a
Lightstreamer Client, then you don’t need to read this document.

This document specifies the Lightstreamer network protocol that can be used to implement
Lightstreamer Client at socket level.

The described protocol is supported by the current version of Lightstreamer Server; see the
SDK compatibility notes.
Any older versions of the protocol are still supported; they should be considered as
deprecated and are not included here.

In order to receive realtime updates from Lightstreamer Server, a Lightstreamer Client should open
an HTTP/HTTPS connection (called stream connection), through which it authenticates and waits for
incoming realtime updates. The Lightstreamer Client could eventually open other HTTP/HTTPS
connections (called control connections) through which it sends commands to the server in order to
manage the contents of the stream connection (see section 2.3, Stream Connection, Control
Connections).
Basically, there are two different communication protocols that a client can use in order to
communicate with Lightstreamer Server:

 The JavaScript mode, where realtime updates are packed into JavaScript commands (used
by HTML Web clients and, in general, clients based on the Web and Node.js Client
Libraries).

 The Text mode, where realtime updates are packed in a simple pipe-separated text protocol
(usually used by application clients).

The topic of this document is the Lightstreamer Server Text mode protocol. It will also be explained
the general data subscription/unsubscription/reception workflow.

- 4 -

2 General workflow

In this chapter we will provide a quick overview of the general Lightstreamer Server behaviour, in
order to give the reader the basic understanding of how the server works.

2.1 HTTP Requests

All the requests that a client sends to Lightstreamer Server use the HTTP protocol over TCP.
Lightstreamer Server also supports HTTP over SSL connections (HTTPS connections).
There are two different HTTP methods that can be used for the requests to the server: the GET
method and the POST method.
In a production environment, a cluster of Lightstreamer Server can be placed behind a Load
Balancer.
All these cases will be discussed in this section.

2.1.1 HTTP vs. HTTPS
The client developer has to choose between when normal HTTP connections should be used and
when to use secure HTTP (HTTPS) connections; it is recommended to use the following policy:

 HTTPS should be used for stream connections when realtime data should be encrypted or the
user authentication has critical security issues, because on these kinds of connections all user
identification data (from the client to the server) and market data (from the server to the client)
are sent. Otherwise HTTP is suitable for stream connections.

 HTTP should be used for control connections, because with these connections no sensitive
data are sent. In this case it is possible to avoid the SSL server-side and client-side encryption
and consequently optimize system performance.

2.1.2 GET method vs. POST method
There are two different HTTP methods that can be used for requests: the GET method and the POST
method.
As a general rule, requests to Lightstreamer Server cause side effects on the Server behaviour, thus,
according to HTTP specifications, they should always be issued through the POST method.
This also avoids any issue with querystring length limits and is compliant with the Web Services
standards.
For testing purposes, however, it may be far easier to use the GET method.
For instance, this would allow you to issue manual requests through the “telnet” utility without being
annoyed by the content-length requirements.
This would also allow you to issue manual requests through a browser address bar.
Using the GET method, though not strictly compliant with HTTP specifications, will, in general, work as
well. Just ensure that the user agent and any intermediate node don't try to leverage the properties of
the HTTP GET method to issue duplicated requests, for any reason.

2.1.3 Lightstreamer Server behind a Load Balancer
Every Lightstreamer Server maintains a list of active sessions. In the case of a cluster of
Lightstreamer Servers behind a Load Balancer, all the Control Connections coming from a
specific client should be directed to the instance of Lightstreamer Server that is serving the Stream
Connection of that client. Moreover, any Stream Connection issued to bind to the same session
(see section 4.2, Binding to an existing Session) should also be directed to that specific instance. In
order to avoid configuration problems that arise when trying to stick a session on a Load Balancing
appliance, Lightstreamer Server provides the following strategy:

- 5 -

Each running instance of Lightstreamer Server reads its own public address (either the hostname –
for example ls1.lightstreamer.com - or the IP address of the computer on which it is running) from its
configuration file (by the configuration parameter “CONTROL_LINK_ADDRESS”) and sends it to
every client that opens a valid Stream Connection with it. Then the client will open the Control
Connections and any Stream Connection issued to bind to the same session directly toward the
hostname or IP that was specified by the server. Upon opening a brand new
In order to make this method work correctly, the string written on the configuration file should
correspond to a public address.

2.2 Subscriptions and unsubscriptions

In order to receive realtime updates from Lightstreamer Server, a client should tell the server:

 which items it is interested in.

 which collection of fields (a Field Schema or Field List, as explained in the Lightstreamer
Glossary) it is interested in (for every item it is going to subscribe to).

 if needed, which of the available Data Adapters is responsible for supplying the item data.

The action of sending this information to the server is called subscription.
When a client is not interested in an item anymore, it should make the reverse operation: telling the
server to stop sending realtime updates on a certain item. This action is called unsubscription.

2.3 Stream Connection, Control Connections and Polling connections

As explained in section 1, Introduction, and in the Lightstreamer Glossary, there are two main types
of HTTP/HTTPS connections that a client can open with Lightstreamer Server:

 The Stream Connection, that is the permanent HTTP or HTTPS connection used to receive a
flow of updateEvents. When opening this connection the client should also identify itself to the
server (during this operation, the Metadata Adapter could refuse the connection). A stream
connection is bound to a specific Adapter Set, composed of a Metadata Adapter and one or
more Data Adapters.

 The Control Connections that are temporary HTTP or HTTPS connections used to send
control commands that manage the contents of the Stream Connection. These connections
are used to make subscriptions and unsubscriptions.

As explained in the Lightstreamer Glossary, Lightstreamer Server associates client Stream
Connections to internal sessions. The Control Connections act on a Stream Connection contents
by directly referencing the underlying session. Several Stream Connections can even follow each
other on the same underlying session, by binding to the session; in this way, constraints on the
connection total length can be overcome (see also below, 2.5, Content-Length management).

 Moreover, there is a particular kind of Stream Connection, that is the Polling Connection. A
polling connection is a temporary connection that is meant to be part of a sequence of
connections on the same session, controlled by the client. At the reception of a polling
connection, the Server sends all the updateEvents collected since the closure of the previous
polling connection of the sequence, then it closes the connection.

A session is closed by the client, by truncating the current connection or by interrupting the current
connection sequence. A session is also closed upon an unexpected error.

- 6 -

A special control connection is also provided to asynchronously force session closing. It can be
used on the server side, by Metadata Adapters or other back-end processes, to force closure of active
sessions. It is available to the clients as well to ensure that the current session or a previous one is
closed on the Server, if connection truncation may not be detected immediately by the Server.

In particular environments, the contents of a stream connection may get buffered in some
intermediate stage and may not reach the client in real time. To better cope with these cases, a special
control connection is provided, to asynchronously force the Server to close the stream connection,
so that the client can rebind to the session through polling connections.

2.4 Data reception workflows

 NOTE: For the sake of clarity, in the following sequence diagrams the connections (stream and
control) are represented as objects. The reader should understand that a formal UML
representation would need a “Lightstreamer Server” object instead.

2.4.1 Basic workflow
In the sequence diagram below, the basic workflow of a simple client-server interaction is shown:

 The client opens the Stream Connection with a Lightstreamer Server that accepts the
connection.

 Then, the client subscribes to the item item1 (with the related field schema schema1) and
Lightstreamer Server starts sending realtime updates to the client.

 The client unsubscribes from the item item1, Lightstreamer Server stops sending realtime
updates.

 Finally the client decides to close the Stream Connection (just by closing the TCP
connection).

- 7 -

Text Client Stream
Connection

Control
Connection 1

Control
Connection 2

Create Session

Subscription (Item1, Schema1)

Data (Item1, Schema1)

Data (Item1, Schema1)

Data (Item1, Schema1)

Connection Closure

Lightstreamer
Server

Unsubscription (Item1, Schema1)

Note:

 Control Connections are always synchronous.

 Data are delivered to the client asynchronously.

2.4.2 Double subscription
Now we will discuss a more complex example, that is:

 The client opens the Stream Connection with a Lightstreamer Server.

 The client subscribes to the item item1 (with the related field schema schema1) and
Lightstreamer Server starts sending realtime updates for item1.

 The client subscribes to the item item2 (with the related field schema schema2) and
Lightstreamer Server starts sending realtime updates for item2.

- 8 -

 The client unsubscribes from the item item2, Lightstreamer Server stops sending realtime
updates for item2 but continues sending data for item1.

Text Client Stream
Connection

Control
Connection1

Control
Connection2

Control
Connection3

Create Session

Data (Item1, Schema1)

Data (Item1, Schema1)

Subscription (Item1, Schema1)

Data (Item2, Schema2)

Data (Item1, Schema1)

Data (Item1, Schema1)

Data (Item1, Schema1)

Data (Item2, Schema2)

Subscription (Item2, Schema2)

Unsubscription (Item2, Schema2)

Lightstreamer
Server

2.4.3 Field schema change
In this case, the client decides to change the collection of fields (field schema) for which it is
receiving realtime updates:

 The client opens the Stream Connection with a Lightstreamer Server.

 Then, the client subscribes to the item item1 (with the related field schema schema1) and
Lightstreamer Server starts sending realtime updates for item1.

- 9 -

 The client decides to change the subscription field schema, so it unsubscribes from the item
item1 (and Lightstreamer Server stops sending realtime updates for item1) and then re-
subscribes to item1 with the new field schema schema2 (and Lightstreamer Server re-starts
sending realtime updates for item1, but with different fields).

Lightstreamer ServerText Client Stream
Connection

Control
Connection 1

Control
Connection 2

Control
Connection 3

Create Session

Data (Item1, Schema1)

Data (Item1, Schema1)

Subscription (Item1, Schema1)

Data (Item1, Schema2)

Data (Item1, Schema2)

Unsubscription (Item1, Schema1)

Subscription (Item1, Schema2)

2.5 Content-Length management

Like all HTTP/HTTPS connections, Stream Connections have a Content-Length that is the total
number of bytes that the server will send to the client while the connection is maintained. When the
Stream Connection reaches its Content-Length, the HTTP/HTTPS connection is closed and the
client should be able to manage the situation.
The Content-Length is configured in Lightstreamer Server configuration; the client can also request
a particular Content-Length at connection time, as will be shown below.
When a Stream Connection is open, Lightstreamer Server sends to the client a SessionId (a string
uniquely identifying a Session). When the Stream Connection reaches its Content-Length and it is
consequently closed, the client should open a new Stream Connection binding this new connection
to the old Session by specifying the SessionId received at the beginning of the previous Stream
Connection.

- 10 -

The client is advised by the server of the fact that the Stream Connection is reaching its Content-
Length with a loop command (see section 4.5.7, Loop messages). See the sequence diagram below:

Text Client Stream
Connection 1

Control
Connection 1

Stream
Connection 2

Control
Connection 2

Create Session

Data (Item1, Schema1)

Data (Item1, Schema1)

Data (Item1, Schema1)

Subscription (Item1, Schema1)

Data (Item2, Schema2)

Loop

Bind Session

Data (Item1, Schema1)

Data (Item2, Schema2)

The Content-Length is
reached

Subscription (Item2, Schema2)

Lightstreamer Server

By binding the old session, the client is sure that the server remembers all its subscribed items (with
the related field schemas), and buffers the updates that it receives while the first connection has been
closed and the second hasn’t been established yet.
The binding operation can fail, for example:

 If too long time passes since the end of the previous Stream Connection, Lightstreamer
Server deletes the old Session.

 If there is a cluster of Lightstreamer Server behind a load balancer, it is possible that for the
new Stream Connection the client is connected to a different Lightstreamer Server that will
not recognize the old Session (but see section 2.1.3, Lightstreamer Server behind a Load

- 11 -

Balancer, for an explanation of how to avoid this; what was stated there about Control
Connections also holds for binding Stream Connections).

In this case, the client should create a new Stream Connection as if it was the first time it connects to
Lightstreamer Server and re-execute all the subscriptions that were active at the moment the
previous Stream Connection reached its Content-Length. See the sequence diagram below:

Lightstreamer ServerText Client Stream
Connection 1

Control
Connection 1

Control
Connection 2

Stream
Connection 2

Stream
Connection 3

Control
Connection 3

The Content-Length is reached

Create Session

Data (Item1, Schema1)

Data (Item1, Schema1)

Data (Item1, Schema1)

Data (Item2, Schema2)

Loop

Subscription (Item1, Schema1)

Data (Item1, Schema1)

Data (Item2, Schema2)

Bind Session

Create Session

The Bind operation fails

Failure

Subscription (Item2, Schema2)

Subscription (Item1, Schema1, Item2, Schema2)

2.6 External Snapshots

In all the example cases analysed until now, it has been supposed that just after the subscription of
an item, Lightstreamer Server was able to give the initial Snapshot for it.
The ability of Lightstreamer Server to supply initial Snapshots to the client strictly depends on the
ability of the involved Data Adapter to supply initial Snapshots to Lightstreamer Server.

- 12 -

If the Data Adapter is not able to supply initial Snapshots, Lightstreamer Server tries to recreate
snapshot information from the updates flow, but this may result in sending incomplete snapshot to the
clients for long time. If this is the case, the client may choose to receive the initial Snapshot from
another source (for instance, from a proprietary Web Service). In these cases, the client should be
careful in the subscription operation, because the following situation could occur:

 The client requests the Snapshot of a certain item to the Snapshot source.

 Once received the Snapshot, the client opens the Control Connection to Lightstreamer
Server in order to subscribe to the item (without asking for snapshot information).

 While the HTTP request is arriving to the server, an item field changes its value; this change is
not received by Lightstreamer Server, because the request has not been elaborated by the
server yet.

 When Lightstreamer Server receives the Control Connection, it starts sending realtime
updates, but the field value change has been definitively lost and the field will be shown on the
client with a wrong value until the next update on it (that will be received by Lightstreamer
Server and sent to the client).

The sequence diagram below explains the problem:

Text Client Stream
Connection

Control
Connection

Snapshot
source

Data (Item1, Schema1, Field2)

Data (Item1, Schema1, Field3)

Data (Item1, Schema1, Field1)

Subscription (Item1, Schema1)

Snapshot download

LOST Data (Item1, Schema1, Field1)

Between these two
instants, the client
shows a wrong value for
Field1

Ligthstreamer Server

How to solve this problem? Lightstreamer Server has a proper feature for Snapshot-realtime
updates synchronization. It consists of the possibility to subscribe to an item in silent mode (that is,
gathering realtime updates on Lightstreamer Server without sending them to the client).
If the client tells Lightstreamer Server to gather data concerning a certain item and then requests the
snapshot to the Snapshot source, once received the Snapshot it is sufficient that the client asks
Lightstreamer Server to send all the actually gathered data in order to avoid the loss of information
(in a worst case, there will be duplicated realtime updates, but these cases are easily recoverable at
the client).
See the sequence diagram below:

- 13 -

Text Client Stream
Connection

Control
Connection 1

Snapshot
source

Control
Connection 2

Data (Item1, Schema1, Field2, Field2)

Data (Item1, Schema1, Field3)

Data (Item1, Schema1, Field1)

Snapshot download

SILENT Subscription (Item1, Schema1)

The realtime update is
recovered because
Lightstreamer Server sends it
to the client when the client
commands the real
subscritption begin

Subscription (Item1, Schema1)

Lightstreamer
Server

As snapshot management has been improved on the Server side, since Lightstreamer Server 3.0
release update synchronization is no longer supported by Lightstreamer client libraries.

- 14 -

3 Subscription Management

In this chapter, we will see the description of the Lightstreamer Server logical table-group-item
division.

3.1 Basic concepts

For the complete definitions of the terms Item,Table/Subscription and Item Group, refer to the
Lightstreamer Glossary. For now, it is important to understand the following concepts:

 A client subscribes to the items by grouping them into Tables, a.k.a. Subscriptions. A client
can subscribe to several Tables and the same item could be subscribed to within several
Tables.

 When subscribing to a Table (i.e. Subscription) the client specifies an id, that is, the name of
an Item Group, a string that the Metadata Adapter is able to transform into a set of items. The
client also specifies a field schema, that is the same for all the items contained in the Item
Group, and a mode (see Lightstreamer Glossary).

 Field schemas and modes could be different for each Table (i.e. Subscription). So, if the
same item is contained in two different Tables, it can be subscribed to with two different field
schemas and modes.

 When subscribing to a Table (i.e. Subscription), the client must assign it a progressive
integer (1, 2, 3, …). This integer will become the univocal reference to the Table.

 When Lightstreamer Server sends realtime updates to the client, for each sent Update Event
it specifies the number of the item within its Table (i.e. Subscription) and the Subscription
number. Note that the items enumeration is decided by the Metadata Adapter and should be
known by the client.

 If multiple Data Adapters are available in the Adapter Set associated to the session, the client
has to specify the configured name of a specific Data Adapter. All the items in the Item Group
must be supplied by the chosen Data Adapter.

- 15 -

4 The Text Mode protocol

In this chapter, we describe the Text Mode protocol. All the messages (subscriptions,
unsubscriptions, received realtime updates, etc.) will be explained in a detailed way.
All actions are initiated by the client, which sends requests detailed through URL querystrings, i.e. in
the general form name1=value1&name2=value2&…. where all values should be protected by URL
encoding as described by RFC 3986. Note that the encoding described by the html specification for
the application/x-www-form-urlencoded MIME format is also supported.

4.1 Creating the Stream Connection

 Method: POST.

 Protocol: HTTP | HTTPS.

 URI: “/lightstreamer/create_session.txt“.

 Objective: Session management; opening a new streaming Session.

 Request parameters:

 LS_op2=create operation description that identifies the session creation on the server

 LS_cid=mgQkwtwdysogQz2BJ4Ji%20kOj2Bg magic key to be specified as is (it is
already in URL encoded form) and that identifies the protocol in use.

 LS_user = user name (used for authentication). This string should be interpreted and
verified by the Metadata Adapter, so the developer is free to decide his own meaning. In
simplified scenarios, the argument can be omitted, but authentication is still requested to
the Metadata Adapter and a null user name is specified.

 LS_password = (optional) user password (used for authentication). This string should
be interpreted and verified by the Metadata Adapter, so the developer is free to decide
his own meaning.

 LS_adapter_set = logical name that identifies the Adapter Set (i.e. the Metadata
Adapter and the related Data Adapters) that will serve and provide data for this stream
connection.

 LS_requested_max_bandwidth = (optional) max bandwidth requested by the client,
expressed in kbps (it can be a decimal value). See the Lightstreamer Glossary for
more information.

 LS_content_length = (optional) Content-Length to be used for the connection
contents. If too low or not present, the Content-Length is assigned by Lightstreamer
Server, based on its own configuration.

 LS_keepalive_millis = (only if LS_polling is not “true”; optional) longest inactivity
time allowed for the connection. If such a long inactivity occurs, Lightstreamer Server
sends a keepalive message. If too low, the Server may apply a configured minimum
time. If too high, the Server will apply a configured maximum time. If not present, the
keepalive time is decided by Lightstreamer Server, based on its own configuration.
Anyway, the keepalive time used is notified to the client in the response header.

 LS_report_info = (optional) if set to “true”, asks the Server to notify, inside the
response header, some limits and capabilities, specified in the current configuration,
which can affect the interaction.

- 16 -

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1
http://tools.ietf.org/html/rfc3986

 LS_polling = (optional) requests a “polling” connection. If set to “true”, the Server will
send only the updates that are ready at connection time and will exit immediately,
keeping the session active for subsequent rebind requests.

 LS_polling_millis = (only if LS_polling is “true”) expected time between the closing
of the connection and the next polling connection. Required by the Server in order to
ensure that the underlying session is kept active across polling connections. If too high,
the Server may apply a configured maximum time. Anyway, the timeout used is notified
to the client at the end of the response (see section Loop messages).

 LS_idle_millis = (only if LS_polling is “true”; optional) time the Server is allowed to
wait for an update to return, if none is present at request time. If zero or not specified,
the Server response will be synchronous and might be empty. If positive, the Server
response will be asynchronous and, if the specified timeout expires, might be empty. If
too high, the Server may apply a configured maximum time.

 Response:

 If an error occurred:

 "ERROR\r\n" + err_code + "\r\n" + err_msg + "\r\n", where err_code and
err_msg could be specified either by the Lightstreamer Server Kernel (if a
formal error occurred) or by the Metadata Adapter (if a notation error occurred).
In particular, err_code can be:

 1 - user/password check failed

 2 - requested Adapter Set not available

 7 - licensed maximum number of sessions reached (this can only happen
with some licenses)

 8 - configured maximum number of sessions reached

 9 - configured maximum server load reached

 10 - new sessions temporarily blocked

 11 - streaming is not available because of Server license restrictions (this
can only happen with special licenses)

 60 – client version not supported with the current Server

 <= 0 - the Metadata Adapter has refused the user connection; the code
value is dependent on the specific Metadata Adapter implementation

 A static HTML error page (if the current Server configuration does not support the
Text mode protocol).

 HTTP error 500 (if an HTTP or protocol level error occurred).

 If no error occurred:

 "OK\r\n"
+ "SessionId:" + SessionId + "\r\n"
[+ "ControlAddress:" + ControlLink + "\r\n"]
+ "KeepaliveMillis:" + KeepaliveTime + "\r\n"
+ "MaxBandwidth:" + max_bandwidth + "\r\n"
[+ "RequestLimit:" + RequestLimit + "\r\n"]
[+ "ServerName:" + ServerName + "\r\n"]
(+ "Preamble:”+ Preamble + “\r\n") *
+ "\r\n"

 SessionId: the Lightstreamer Server internal string representing the
Session, this string must be sent with every following Control
Connection.

- 17 -

 ControlLink (optional): if a Link Control (see section 2.1.3, Lightstreamer
Server behind a Load Balancer) is specified in the Lightstreamer Server
configuration file, this is the Internet address (or IP address) to which
every following Control Connection must be opened. If this parameter is
not present, it means that the client should open all the Control
Connections to the same address to which it opened this Stream
Connection.

 KeepaliveTime: the longest inactivity time (in milliseconds) guaranteed
throughout connection life. For a stream connection, when no updates
have been sent for this time, a probe signal is sent to the client. On the
other hand, for a polling connection, if the response has not been
supplied for this time, an empty response is issued. Not receiving any
message for longer than this time may be the signal of a problem.

 max_bandwidth: the server-side bandwidth constraint on the connection
data flow; the special value of 0 means that no limitation is applied; the
special value of -1 means that no limitation is applied and no client-side
limitation is allowed.
Note that, but for the -1 case, the real bandwidth allowed to the
connection may be less, because of the client-side constraint declared
with the LS_requested_max_bandwidth parameter.

 RequestLimit (optional): the maximum length allowed by the Server for a
client request. It is configured through the request_limit element in the
Server configuration file. It is returned only if LS_report_info=true is
specified in the request and the Server version is 3.4.4 or greater. Note
that this limit should be set long enough that any single request can
always be accepted; however, the limit may affect the batching of control
requests (see section 4.3.7).

 ServerName (optional): the name assigned to the server socket which is
handling the request. The name is assigned to a server socket through
the <http_server> or <https_server> element in the Server configuration
file. It is returned only if LS_report_info=true is specified in the request
and the Server version is 3.4.6 or greater. However, the socket name is
not returned upon a bind request (see the next session), though, with
some particular configurations, it is possible that bind requests are
handled by a server socket which is different than the one which served
the session creation request.

 Preamble (optional): this header has no real functional impact and should
be ignored. The server may send several of these messages in a single
response with the only purpose to fill any potential blocking buffer on
some intermediate node.

 After this header, the push content phase starts; see section 4.5, for details.

4.2 Binding to an existing Session

 Method: POST.

 Protocol: HTTP | HTTPS.

 URI: “/lightstreamer/bind_session.txt“.

 Objective: Session management; replacing a completely consumed connection in listening for
an active Session.

- 18 -

 Request parameters:

 LS_session= the Lightstreamer Server internal string representing the Session the
client wants to bind to.

 LS_requested_max_bandwidth= (optional) max bandwidth requested by the client
expressed in kbps (it can be a decimal value). See the Lightstreamer Glossary for
more information.
If missing, the default request not to limit the bandwidth is applied; this may cause a
change of the current value.

 LS_content_length = (optional) Content-Length to be used for the connection
contents. If too low or not present, the Content-Length is assigned by Lightstreamer
Server, based on its own configuration.

 LS_keepalive_millis = (only if LS_polling is not “true”; optional) longest inactivity
time allowed for the connection. If such a long inactivity occurs, Lightstreamer Server
sends a keepalive message. If too low, the Server may apply a configured minimum
time. If too high, the Server will apply a configured maximum time. If not present, the
keepalive time is decided by Lightstreamer Server, based on its own configuration.
Anyway, the keepalive time used is notified to the client in the response header.

 LS_report_info = (optional) if set to “true”, asks the Server to notify, inside the
response header, some limits and capabilities, specified in the current configuration,
which can affect the interaction.

 LS_polling = (optional) requests a “polling” connection. If set to “true”, the Server will
send only the updates that are ready at connection time and will exit immediately,
keeping the session active for subsequent rebind requests.

 LS_polling_millis = (only if LS_polling is “true”) expected time between the closing
of the connection and the next polling connection. Required by the Server in order to
ensure that the underlying session is kept active across polling connections. If too high,
the Server may apply a configured maximum time. Anyway, the timeout used will be
notified to the client at the end of the response (see section Loop messages).

 LS_idle_millis = (only if LS_polling is “true”; optional) time the Server is allowed to
wait for an update to return, if none is present at request time. If zero or not specified,
the Server response will be synchronous and might be empty. If positive, the Server
response will be asynchronous and, if the specified timeout expires, might be empty. If
too high, the Server may apply a configured maximum time.

 Response:

 If an error occurred:

 "ERROR\r\n" + err_code + "\r\n" + err_msg + "\r\n", where err_code and
err_msg could be specified either by the Lightstreamer Server Kernel (if a
formal error occurred) or by the Metadata Adapter (if a notation error occurred).
In particular, err_code can be:

 3 - the session was initiated with a different and incompatible
communication protocol

 11 - streaming is not available because of Server license restrictions (this
can only happen with special licenses)

Only upon the first rebind on a session that has not been used yet, err_code can
also be:

 7 - licensed maximum number of sessions reached (this can only happen
with some licenses)

 8 - configured maximum number of sessions reached

- 19 -

 “SYNC ERROR\r\n”: when a synchronization error occurs, it means that the
server does not recognize the received SessionId. In this case, the client should
create a new Stream Connection and re-subscribe to all the old items and
related field schemas (see section 2.5, Content-Length management).

 “END\r\n” or “END\r\n“ + cause_code + “\r\n”: the requested session has just
been forcibly closed on the Server side. See the asynchronous version of this
notification, in section 4.5.6, End messages, for a general description of the case
and for a reference on the cause_code possible values.

 A static HTML error page (if the current Server configuration does not support the
Text mode protocol).

 HTTP error 500 (if an HTTP or protocol level error occurred).

 If no error occurred, the workflow is the same explained for the creation of a Stream
Connection (section 4.1, Creating the Stream Connection).

4.3 Control connections

4.3.1 Subscription Control Connections

 Method: POST.

 Protocol: HTTP (Recommended) | HTTPS.

 URI: “/lightstreamer/control.txt“.

 Objective: table (i.e. subscription) management (creation, activation, deletion).

 Request parameters:

 LS_session = SessionId received from Lightstreamer Server at the beginning of the
Stream Connection.

 LS_table = progressive identification number of the Table (i.e. Subscription) to which
the operation specified in LS_op parameter applies.

 LS_op = add | add_silent | start | delete

 add = creates and activate a new table. The item group specified in the LS_id
parameter will be subscribed to and Lightstreamer Server will start sending
realtime updates to the client immediately.

 add_silent = creates a new table. The item group specified in the LS_id
parameter will be subscribed to but Lightstreamer Server will not start sending
realtime updates to the client immediately.

 start = activate a table previously created with an “add_silent” operation.
Lightstreamer Server will start sending realtime updates to the client
immediately. When LS_op=start, none of the following request parameters must
be sent, as the table content has been specified in the previous “add_silent”
operation.

 delete = deletes the specified table. All the related items will be unsubscribed
from and Lightstreamer Server will stop sending realtime updates to the client
immediately. When LS_op=delete, none of the following request parameters must
be sent, as the table content has been specified in a previous “add” or
“add_silent” operation.

- 20 -

Only if either “LS_op=add", “LS_op=add_silent" or “LS_op=start" the following parameters must
be added:

 LS_data_adapter = (optional) configured name of one of the Data Adapters available
in the Adapter Set. This Data Adapter must supply all the requested items. If not
specified, then the default Data Adapter configured for the Adapter Set is requested.

 LS_id = identification name of the item group that the Table (i.e. Subscription)
contains; this name is interpreted by the Metadata Adapter.

 LS_schema = identification name of the field schema related to the items in the Table;
this name is interpreted by the Metadata Adapter.

 LS_selector = (optional) identification name of a selector related to the items in the
Table; this name is interpreted by the Metadata Adapter.

 LS_mode = subscription mode of all the items in Table:

 Values= RAW | MERGE | DISTINCT | COMMAND;

 See the Lightstreamer Glossary for details about subscription modes.

 LS_requested_buffer_size = (optional) dimension (expressed in number of update
events) of the buffers related the items in the Table; see the Lightstreamer Glossary
for more details.
If not specified, the default buffer size is 1 if LS_mode is MERGE and unlimited if
LS_mode is DISTINCT. Specify 0 to request an unlimited buffer (the Server will probably
limit the buffer size, however).

 Considered only if LS_mode is MERGE or DISTINCT and
LS_requested_max_frequency is not set to unfiltered.

 LS_requested_max_frequency = (optional) unfiltered | maximum update frequency
(expressed in updates/sec) for the items in the Table; see the Lightstreamer Glossary
for more details.

 unfiltered: Lightstreamer Server should forward each update as soon as
possible (as in the unlimited frequency case), but also without losses.
Considered only if LS_mode is MERGE, DISTINCT or COMMAND.

 Update frequency: A decimal number can be supplied; the decimal separator
should be a dot. A 0 value means no frequency limit.
Considered only if LS_mode is MERGE, DISTINCT or COMMAND (in
COMMAND mode, the maximum frequency applies to the UPDATE commands
sent for each key).

 Default value = 0.

 LS_snapshot = (optional) true | false | requested snapshot length (expressed in
number of events) for the items in the Table.

 true: Lightstreamer Server should send the snapshot (if available) for the items
contained in the Table.
Considered only if LS_mode is MERGE, DISTINCT or COMMAND.

 false: Lightstreamer Server must not send the snapshot for the items contained
in the Table.

 Snapshot length: Admitted only if LS_mode is DISTINCT. Lightstreamer Server
should send the snapshot (if available) for the items contained in the Table,
limiting the length to the requested value.

 Default value = false.

 Response:

 If an error occurred:

- 21 -

 "ERROR\r\n" + err_code + "\r\n" + err_msg + "\r\n", where err_code and
err_msg could be specified either by the Lightstreamer Server Kernel (if a
formal error occurred) or by the Metadata Adapter (if a notation error occurred).
In particular, err_code can be:

 17 - bad Data Adapter name or default Data Adapter not defined

 19 - specified Table (i.e. Subscription) not found (for start or delete
operation)

 21 - bad Item Group name

 22 - bad Item Group name for this Field schema

 23 - bad Field schema name

 24 - subscription mode not allowed for an Item

 25 - bad Selector name

 26 - unfiltered dispatching not allowed for an Item, because a frequency
limit is associated to the Item

 27 - unfiltered dispatching not supported for an Item, because a frequency
prefiltering is applied for the Item

 28 - unfiltered dispatching is not allowed by the current license terms (for
special licenses only)

 29 - RAW mode is not allowed by the current license terms (for special
licenses only)

 30 - subscriptions are not allowed by the current license terms (for special
licenses only)

 <= 0 - the Metadata Adapter has refused the subscription or
unsubscription request; the code value is dependent on the specific
Metadata Adapter implementation

 "SYNC ERROR\r\n", when a synchronization error occurred (normally, the server
does not recognize the SessionId);

 A static HTML error page (if the current Server configuration does not support the
Text mode protocol).

 HTTP error 500 (if an HTTP or protocol level error occurred).

 If no error occurred:

 "OK\r\n"

4.3.2 Item Groups and Field Schemas
As explained previously, the Item Group and the Field Schema specified in Control Connections
are interpreted by the Metadata Adapter, and so the developer is free to decide his/her own meaning
for these parameters.
It is suggested to use the following notation (because it is the clearest and most debuggable one):

 Specify Item Groups by their contents. For example a pipe-separated item name list could be
used as the id.

 Example: LS_id=NASDAQ.MSFT|NASDAQ.YHOO|AFF.F|AFF.STM

 Specify Field Schemas by their contents as well. For example a pipe-separated field name
list could be used as a field schema.

 Example: LS_schema=LAST_PRICE|BID|ASK|VOLUME|TIME

- 22 -

4.3.3 Subscription reconfiguration Control Connections

 Method: POST.

 Protocol: HTTP (Recommended) | HTTPS.

 URI: “/lightstreamer/control.txt“.

 Objective: changing subscription parameters for a currently subscribed table (i.e. subscription)

 Request parameters:

 LS_session = SessionId received from Lightstreamer Server at the beginning of the
Stream Connection.

 LS_table = progressive identification number of a Table (i.e. Subscription) whose
subscription parameters should be changed dynamically.

 LS_op = reconf

Actually, the only parameter that can be changed in this way is the maximum update
frequency. Moreover, this parameter cannot be used to switch between filtered and unfiltered
dispatching.

 LS_requested_max_frequency = (optional) maximum update frequency (expressed
in updates/sec) for the items in the Table; see the Lightstreamer Glossary for more
details.

 Admitted only if the Table is not subscribed to with unfiltered dispatching.
A decimal number can be supplied; the decimal separator should be a dot. A 0
value means no frequency limit.
Considered only if the subscription mode of the Table is MERGE, DISTINCT or
COMMAND (in COMMAND mode the maximum frequency applies to the
UPDATE commands sent for each key).

 Response:

 If an error occurred:

 "ERROR\r\n" + err_code + "\r\n" + err_msg + "\r\n", where err_code and
err_msg could be specified either by the Lightstreamer Server Kernel (if a
formal error occurred) or by the Metadata Adapter (if a notation error occurred).
In particular, err_code can be:

 13 - modification not allowed because the Table is configured for
unfiltered dispatching

 19 - specified Table (i.e. Subscription) not found

 "SYNC ERROR\r\n", when a synchronization error occurred (normally, the server
does not recognize the SessionId);

 A static HTML error page (if the current Server configuration does not support the
Text mode protocol).

 HTTP error 500 (if an HTTP or protocol level error occurred).

 If no error occurred:

 "OK\r\n"

4.3.4 Session constraints Control Connections

 Method: POST.

- 23 -

 Protocol: HTTP (Recommended) | HTTPS.

 URI: “/lightstreamer/control.txt“.

 Objective: session constraints management (bandwidth modification).

 Request parameters:

 LS_session = SessionId received from Lightstreamer Server at the beginning of the
Stream Connection.

 LS_op = constrain

 LS_requested_max_bandwidth = (optional) max bandwidth requested by the client
expressed in kbps (it can be a decimal value). See the Lightstreamer Glossary for
more information.
If missing, the default request not to limit the bandwidth is applied; this may cause a
change of the current value.

 Response:

 If an error occurred:

 "ERROR\n\n" + err_code + "\r\n" + err_msg + "\r\n", where err_code and
err_msg could be specified either by the Lightstreamer Server Kernel (if a
formal error occurred) or by the Metadata Adapter (if a notation error occurred).
No error case is possible at the current stage.

 "SYNC ERROR\r\n", when a synchronization error occurred (normally, the server
does not recognize the SessionId);

 A static HTML error page (if the current Server configuration does not support the
Text mode protocol).

 HTTP error 500 (if an HTTP or protocol level error occurred).

 If no error occurred:

 "OK\r\n"

4.3.5 Asynchronous request for session rebind Control Connections

 Method: POST.

 Protocol: HTTP (Recommended) | HTTPS.

 URI: “/lightstreamer/control.txt“.

 Objective: Session management; forcing the Server to close the current connection related to
an existing session and ask for a rebind.

 Request parameters:

 LS_session = SessionId associated by Lightstreamer Server to the session; received
by the client at the beginning of the Stream Connection.

 LS_op = force_rebind

 Response:

 If an error occurred:

 "ERROR\n\n" + err_code + "\r\n" + err_msg + "\r\n", where err_code and
err_msg are specified by the Lightstreamer Server Kernel.
No error case is possible at the current stage.

- 24 -

 "SYNC ERROR\r\n", when a synchronization error occurred (normally, the server
does not recognize the SessionId);

 A static HTML error page (if the current Server configuration does not support the
Text mode protocol).

 HTTP error 500 (if an HTTP or protocol level error occurred).

 If no error occurred:

 "OK\r\n"

4.3.6 Session asynchronous destroy Control Connections

 Method: POST.

 Protocol: HTTP (Recommended) | HTTPS.

 URI: “/lightstreamer/control.txt“.

 Objective: Session management; forcing closure of an existing session on the Server.

 Request parameters:

 LS_session = SessionId associated by Lightstreamer Server to the session; received
by the client at the beginning of the Stream Connection; received by a Metadata
Adapter through specific notifications.

 LS_op = destroy

 LS_cause_code = (optional) a numeric code to be reported in the consequent End
message that will be received in the Stream Connection instead of the default 31.
Useful if the request is issued by some server-side process. Only 0 or a negative code
are supported; a positive code would be collapsed to 0.

 Response:

 If an error occurred:

 "ERROR\n\n" + err_code + "\r\n" + err_msg + "\r\n", where err_code and
err_msg are specified by the Lightstreamer Server Kernel.
No error case is possible at the current stage.

 "SYNC ERROR\r\n", when a synchronization error occurred (normally, the server
does not recognize the SessionId);

 A static HTML error page (if the current Server configuration does not support the
Text mode protocol).

 HTTP error 500 (if an HTTP or protocol level error occurred).

 If no error occurred:

 "OK\r\n"

4.3.7 Batching of Control Requests

Batching of multiple different Control Requests in a single HTTP or HTTPS Connection is possible.
The Requests have to be written in the content part of the HTTP or HTTPS message on different lines
of text (i.e. the Requests have to be separated by “\r\n”, while the last Request should not be
terminated by “\r\n”). Control Requests of all kinds can be mixed together, though this is especially
meaningful for subscription requests. The management of the various requests can be performed in
parallel.

- 25 -

The Requests are independent from one another and are processed in sequence. The output lines
generated by the different Requests are joined and returned in the same order. However, if one of the
Requests should cause a static HTML error page or an HTTP error 500 to be issued, then the
processing would be stopped and only that answer would be returned.

Note: if, for testing purpose, the HTTP GET method is used, this batching syntax is not available.

4.4 Sending Messages

4.4.1 Synchronous version

 Method: POST.

 Protocol: HTTP (Recommended) | HTTPS.

 URI: “/lightstreamer/send_message.txt“.

 Objective: Sending a custom message to Lightstreamer Server and waiting for the
elaboration outcome. A message is a pure block of text to be interpreted and processed by the
Metadata Adapter. For this reason, a message can only be sent in the context of an already
established push session, for which specific user credentials have been supplied and a specific
Adapter Set has been associated.

 Request parameters:

 LS_session = SessionId received from Lightstreamer Server at the beginning of the
Stream Connection.

 LS_message = any text string. This string should be interpreted and verified by the
Metadata Adapter, so the developer is free to decide his own meaning.

 Response:

 If an error occurred:

 "ERROR\r\n" + err_code + "\r\n" + err_msg + "\r\n", where err_code and
err_msg could be specified either by the Lightstreamer Server Kernel (if a
formal error occurred) or by the Metadata Adapter (if a notation error occurred).
In particular, err_code can be:

 <= 0 - the Metadata Adapter has refused the message; the code value is
dependent on the specific Metadata Adapter implementation

 "SYNC ERROR\r\n", when a synchronization error occurred (normally, the server
does not recognize the SessionId);

 A static HTML error page (if the current Server configuration does not support the
Text mode protocol).

 HTTP error 500 (if an HTTP or protocol level error occurred).

 If no error occurred:

 "OK\r\n"

4.4.2 Asynchronous version

 Method: POST.

 Protocol: HTTP (Recommended) | HTTPS.

- 26 -

 URI: “/lightstreamer/send_message.txt“.

 Objective: Sending a custom message to Lightstreamer Server to be processed
asynchronously and freeing the connection as soon as possible; any elaboration outcome will
be received through the push contents. A message is a pure block of text to be interpreted and
processed by the Metadata Adapter. For this reason, a message can only be sent in the
context of an already established push session, for which specific user credentials have been
supplied and a specific Adapter Set has been associated.

 Request parameters:

 LS_session = SessionId received from Lightstreamer Server at the beginning of the
Stream Connection.

 LS_sequence = an alphanumeric identifier (the underscore character is also allowed),
used to identify a subset of messages to be managed in sequence, based on the
assigned progressive numbers.
All messages associated with the same sequence name that have successfully been
sent to the Server are guaranteed to be processed sequentially, according to the
associated progressive numbers.
In case a message is received and the messages for all the previous numbers expected
haven't been received yet, the latter numbers can be skipped according to the timeout
specified with the message.
If the special “UNORDERED_MESSAGES” sequence name is used, then the
associated messages are processed immediately, possibly concurrently, with no ordering
constraint. Yet, progressive numbers for which no messages have been received after a
server-side timeout may be notified by Lightstreamer Server as skipped.

 LS_msg_prog = the progressive number of the message within the specified sequence,
starting from 1.

 LS_max_wait = (optional) the maximum time the Server can wait before processing the
message if one or more of the preceding messages for the same sequence have not
been received.
If too high or not specified, the timeout is assigned by Lightstreamer Server, based on
its own configuration.
If the special “UNORDERED_MESSAGES” sequence name is used, the setting is
ignored, as a server-side timeout is applied.

 LS_message = any text string. This string should be interpreted and verified by the
Metadata Adapter, so the developer is free to decide his own meaning.

 Response:

 If an error occurred:

 "ERROR\r\n" + err_code + "\r\n" + err_msg + "\r\n", where err_code and
err_msg are specified by the Lightstreamer Server Kernel.
In particular, err_code can be:

 32 - The specified progressive number is too low; either a message with
this number has already been enqueued (and possibly processed) or the
number has already been skipped by timeout (the exact case cannot be
determined).

 33 - The specified progressive number is too low; a message with this
number has already been enqueued (and possibly processed).

 "SYNC ERROR\r\n", when a synchronization error occurred (normally, the server
does not recognize the SessionId);

 A static HTML error page (if the current Server configuration does not support the
Text mode protocol).

- 27 -

 HTTP error 500 (if an HTTP or protocol level error occurred).

 If no error occurred:

 "OK\r\n", which only means that the message has been enqueued for processing.

4.5 Push Contents

The data sent on the Stream Connections consist of 8 different types of messages:

 Update messages.

 Overflow messages.

 End-of-Snapshot messages.

 Asynchronous Send Message outcome messages.

 Probe messages.

 End messages.

 Loop messages.

 Push error messages.

4.5.1 Update messages
Update messages contain snapshot values or realtime updates for a certain item. The update
message syntax is the following:

 table + "," + item + "|" + values + "\r\n"

where:

 table is the number of the Table;

 item is the number of the item within the Table, assigned by the Metadata Adapter during the
subscription operation;

 values is the string containing the pipe-separated encoded field values.
The number of field values received is the same as the number of fields in the field schema
specified in the subscription operation.
See below for details on the encoding/decoding rules.

Here is an example:

 table = 1;

 for the items in the Table the field schema = LAST_PRICE|PERCENTAGE_CHANGE|
LAST_CHANGE_TIME is specified;

 the Table has only one item.

The updates commands for the Table could be like the following:

 1,1|10.5|+12.5%|12:55:56

 1,1|10.4|+12.4%|12:57:00

- 28 -

If snapshot information has been requested for an item, the very first updates for the item may carry
the current state of the item (the snapshot) rather than a state update. In particular, if the subscription
mode is MERGE, the first update carries snapshot information, while if the subscription mode is
DISTINCT or COMMAND then all the updates before the End-of-Snapshot message carry snapshot
information.

Value Encoding

Each field value can be any UNICODE text.

All the values to be sent by the Server to the clients undergo a two phase encoding.
In the first phase, a simple compression mechanism is applied to the values in order to reduce the
amount of data sent to the Client.

 If a field of an item is unchanged with respect to the previous delivery to the Client, then it is
transformed into an empty string.

 At the same time, real empty strings and null strings are considered and transformed into “$”
and “#”, respectively, in order to be sent to the Client.

 On the other hand, data strings starting with “$” or with “#” are encoded by doubling the first
character.

In the second phase, an escaping mechanism is applied on the values, so that data can be sent to the
Client as ASCII text. Alphanumeric characters and most ASCII symbols are transmitted in ASCII code.
All other characters are transmitted as UTF-16 escape sequences of the form “\uXXXX” or
“\uXXXX\uYYYY”.
This escaping phase is also needed to escape those characters that will be used as field delimiters in
update packaging (“|” in Text mode and “'” (single quote) in JavaScript mode).

The Client should decode the received values by using the following algorithm:

 if the value is equal to “$”, then it should be transformed into an empty string (“”);

 otherwise, if the value is equal to “#”, then it should be transformed into a null value;

 otherwise, if the value is equal to “” (empty string), then the Client should consider it
unchanged with respect to the previous value of the same field of the same item (note that
this case will never be possible on the first update for an item);

 otherwise (hence the value is an actual string), the Client should check for a leading “$” or “#”
and remove it; then it should decode any “\uXXXX” UTF-16 escape sequence inside the value
and recognize possible UTF-16 surrogate pairs, to come up with a string made of UNICODE
characters.
NOTE: actually, unmatched high surrogates and low surrogates may be found, as they are not
excluded by the Java Adapter Interface, which is based on java String objects. The
management of such code units is left to the application.

Alternatively, the decoding of the UTF-16 escape sequences can be performed before decompression
(i.e. before the evaluation of the “$”, “#” and “” values), rather than after it. This is possible, because “\”
characters in data values are escaped, while “$” and “#” characters in data values are not escaped.
Note that this is how the values would be decoded in JavaScript mode, where the UTF-16 escape
sequences would be directly handled by the JavaScript parser.

Here is an example involving encoded data:

 table = 1;

- 29 -

 for the items in the Table the field schema = CATEGORY|HEADLINE|BODY is specified;

 the Table has only one item.

The updates commands for the Table could be like the following:

 1,1|SPORT|ITALY WINS SOCCER WORLD CHAMPIONSHIPS|$

 1,1||ZIDANE ELECTED \u0022MVP\u0022|

Note that the BODY field is empty for both updates.

4.5.2 End-of-Snapshot messages
End-of-Snapshot messages notify that the subsequent updates for an item will no longer carry
snapshot information, but rather state updates. The End-of-Snapshot message syntax is the
following:

 table + "," + item + "," + "EOS" + "\r\n"

where:

 table is the number of the Table;

 item is the number of the item within the Table, assigned by the Metadata Adapter during the
subscription operation;

End-of-Snapshot notification are received only for items subscribed to in DISTINCT or COMMAND
mode with a request for snapshot informations.

4.5.3 Overflow messages
An Overflow message notifies that one or more updates for an item have been dropped because of
internal buffer limitations in Lightstreamer Server. The Overflow message syntax is the following:

 table + "," + item + "," + "OV" + overflowSize + "\r\n"

where:

 table is the number of the Table;

 item is the number of the item within the Table, assigned by the Metadata Adapter during the
subscription operation;

 overflowSize is the number of consecutive events dropped for the indicated item.

This notification can only be sent if the item was subscribed to in RAW or COMMAND mode, or if it
was subscribed to in MERGE or DISTINCT mode and unfiltered dispatching was requested. These
are the modes for which events dropping is not allowed (for filtered COMMAND mode, this applies to
“ADD” and “DELETE” events only). So, in all these cases, whenever the Server has to drop an event
because of resource limits, it notifies the client in this way.

4.5.4 Asynchronous Send Message outcome messages

Corresponding with any successful Asynchronous Send Message request, a notification of the
elaboration outcome is received after the elaboration has terminated, unless the current session
terminates first.

- 30 -

Within each requested sequence, the notifications are guaranteed to be received ordered by the
message progressive numbers. The notifications are guaranteed to start from 1 and to leave no holes.
Hence, all message numbers skipped by timeout are also notified.
As an exception to the above, for all messages for which the “UNORDERED_MESSAGES” sequence
was specified, the notifications are only guaranteed to be unique for each progressive number.

The Asynchronous Send Message outcome message syntax is the following:

 “MSG” + "," + sequence + "," + prog + "," + "DONE” + "\r\n"

 “MSG” + "," + sequence + "," + prog + "," + "ERR" + "," + err_code + "," + err_msg + "\r\n"

The first syntax notifies successful elaboration, where:

 sequence is the sequence identifier specified in the related request;

 prog is the message progressive number specified in the related request.

The second syntax notifies either unsuccessful elaboration or skipped elaboration. In the former case,
the <sequence, prog> pair is also related to a specific request; in the latter one the pair is inferred
from other requests. err_code and err_msg could be specified either by the Lightstreamer Server
Kernel (if a formal error occurred) or by the Metadata Adapter (if a notation error occurred).
In particular, err_code can be:

 34 - the request has been unexpectedly refused as illegal by the Metadata Adapter (i.e. a
NotificationException was thrown);

 35 - the elaboration has unexpectedly failed for any reason;

 38 - the specified progressive number has been skipped by timeout;

 39 - the specified progressive number and some consecutive preceding numbers have been
skipped by timeout; only in this case, err_code is an integer and specifies how many
progressive numbers have been skipped; the notification pertains to all those progressive
numbers;

 <= 0 - the Metadata Adapter has refused the message; the code value is dependent on the
specific Metadata Adapter implementation.

4.5.5 Probe messages
When no realtime updates are available, probe messages are sent in order to keep the HTTP
connection alive through proxies and firewalls. Probe messages can be ignored by the client or they
can be handled as heartbeat signals.
The probe message syntax is the following:

 "PROBE\r\n"

4.5.6 End messages
A Stream Connection might be closed explicitly on the Server side.
In such a case, the Server sends an end message and closes the Stream Connection. The client
cannot rebind again to the session; moreover, it is advised not to try to recover the problem by
opening a new session immediately.
The end message syntax is the following:

 "END " + cause_code + "\r\n"

 "END\r\n"

- 31 -

where cause_code indicate the original cause of the interruption; it can be:

 31 The session was closed (possibly by the administrator) through a "destroy" request;

 32 The session was closed by the administrator through JMX;

 33, 34 An unexpected error occurred on the Server while the session was in activity;

 35 The Metadata Adapter does not allow more than one session for the current user and has
requested the closure of the current session upon opening of a new session for the same user
by some client;

 40 A manual rebind to the same session has been performed by some client;

 48 The maximum session duration configured on the Server has been reached. This is only
meant as a way to refresh the session (for instance, to force a different association in a
clustering scenario), hence the client should recover by opening a new session immediately.

 <= 0 - The session was closed (possibly by the administrator) through a "destroy" request and
this code was supplied as a custom cause code;

 a different code value is possible and signals an unexpected cause;

 a missing code (i.e. the second syntax case) signals that the cause could not be determined.

The following codes can only be received at the moment a session is used for the first time:

 7 Licensed maximum number of sessions reached (this can only happen with some licenses);

 8 Configured maximum number of sessions reached.

Any trailing lines received after this message should be ignored.

4.5.7 Loop messages
When the Stream Connection is reaching its natural completion, Lightstreamer Server sends a loop
message in order to tell the client to open a new Stream Connection in order to rebind to the same
session.
This may happen because the connection has exhausted its Content-Length (see section 2.5,
Content-Length management) or because a polling connection was requested.
The loop message syntax is the following:

 "LOOP " + holding_time + "\r\n"

 "LOOP\r\n"

where:

 holding_time is the time (in milliseconds) the session is guaranteed to remain active inside
Lightstreamer Server (useful for polling requests).
Note: Lightstreamer Server also applies a supplementary holding time to take computation
and connection delays into account.

 The first form is used only if polling mode was requested on the connection.

 If the second form is used, the implied holding time is 0 and the client should rebind to the
session as soon as possible.

Any trailing lines received after this message should be ignored.

- 32 -

4.5.8 Push error messages
Actually, no asynchronous error messages are used.
If any abnormal condition ever occurred such that it would prevent streaming from continuing correctly,
then this would just cause the connection to be closed.
If closing the connection gracefully were possible, an END message with a 33 or 34 code would be
issued.

- 33 -

5 Tests and Examples

5.1 Test environment

For testing the examples described in this chapter, it is possible to use the test installation of
Lightstreamer Server included in the distribution package (follow the instructions in
GETTING_STARTED.TXT to run the Server). We assume in the examples below that the Server
instance is available at the “localhost” address.

This Lightstreamer Server test installation is configured as follows:

 The Server listens for HTTP requests on a configured port. See the <port> element in the
Server configuration file. Let's assume in the examples below that the port is 8080.

 The SSL server is not active. The tester could use HTTPS connections instead of HTTP
connections when testing via Web Browser, provided that the SSL server is activated.

 The Server runs the “WELCOME” Adapter Set, which, in turn, contains several Data Adapters
to manage all the welcome-page-related items. In the examples below, we will be using the
“STOCKS” Data Adapter.
Hence, the LS_adapter_set parameter should be set to “WELCOME” and the LS_data_adapter
parameter should be set to “STOCKS” (see section 4.1, Creating the Stream Connection).

 The chosen Data Adapter supplies the following items:

 item1



 item30

corresponding to 30 simulated stock quotes.

For each item, the Data Adapter supplies the following fields:

 stock_name

 time

 last_price

 pct_change

 min

 max

 ask

 bid

 bid_quantity

 ask_quantity

 ref_price

 open_price

The Data Adapter generates random values and is able to supply Snapshots.

- 34 -

 The Metadata Adapter for the welcome page is implemented as follows:

 No authentication is performed, so the LS_user parameter can be blank;

 No custom ids for Item Groups are available. Any set of items can be requested by
specifying the space-separated list of item names (to fit them into HTTP commands, the
spaces will be represented through '+' characters);

 No custom field schema names are available. Any set of fields can be requested by
specifying the space-separated list of field names (to fit them into HTTP commands, the
spaces will be represented through '+' characters).

 When answering to a Stream Connection, the Server may include many occurrences of the
“Preamble” custom header, in order to fill any potential blocking buffer on some intermediate
node.

The following examples can be tested in two different ways:

 By telnet: commands can be sent to the test Lightstreamer Server by executing:
telnet localhost 8080
and then by sending HTTP commands (remember to send a blank line after every
command).

 By Web Browser: commands are sent by putting the specified command URL in the browser
address bar.

Important: when making these tests with a web browser, it is possible that (while creating the
Stream Connection) the user should wait a few minutes before the browser shows the
SessionId. This is due to web browsers buffering (we are using a non-HTML mode in a HTML
browser just for didactic purpose).

Please note that, since the examples discussed below have been written in order to be tested via
telnet or via a Web Browser, the HTTP method used is always the GET one, though only the POST
one is officially supported.

For every test, the user will need:

 A Stream Connection, that is:

 a permanent telnet connection through which realtime updates will appear;

 a browser window in which realtime updates will appear.

 One or more Control Connections, that is:

 auxiliary telnet connections (made from different shells) through which commands are
sent to the server;

 an auxiliary browser window through which commands are sent to the server.

Remember that at the beginning of the Stream Connection, Lightstreamer Server sends the
SessionId to the client (see section 2.3, Stream Connection, Control Connections and Polling
connections), so the user has to copy the received value and to fill with it the LS_session parameter
of all the Control Connections of the test.

5.2 Table (i.e. Subscription) management

In this section, some examples of subscription and unsubscription operations are listed.

- 35 -

5.2.1 Basic workflow
In this test one item will be subscribed to in one Table.

 Stream Connection Creation:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/create_session.txt?
LS_op2=create&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_adapter_set=WELCOME&LS_user= HTTP/1.0

 Send a blank line

 Server command: OK

 Server command: SessionId:S9cb4758037a95c01T0439915 (copy the received
value)

 (other Server headers, possibly including many Preamble lines)

 Via browser:

 Open the URL:
http://localhost:8080/lightstreamer/create_session.txt?
LS_op2=create&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_adapter_set=WELCOME&LS_user=

 Server command: OK

 Server command: SessionId:S9cb4758037a95c01T0439915 (copy the
received value)

 (other Server headers, possibly including many Preamble lines)

 Subscription:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS
_data_adapter=STOCKS&LS_id=item2+item11+item18&LS_schema=las
t_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+mi
n+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
HTTP/1.0

 Send a blank line

 The server starts sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS
_data_adapter=STOCKS&LS_id=item2+item11+item18&LS_schema=las
t_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+mi
n+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true

 The server starts sending realtime updates on the Stream Connection browser.

 Unsubscription:

 Via telnet:

 Execute: telnet localhost 8080

- 36 -

http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=QUOTE_ADAPTER&LS_id=item2+item11+item18&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=QUOTE_ADAPTER&LS_id=item2+item11+item18&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2+item11+item18&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2+item11+item18&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2+item11+item18&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2+item11+item18&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2+item11+item18&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2+item11+item18&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
HTTP/1.0

 Send a blank line

 The server stops sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete

 The server stops sending realtime updates on the Stream Connection browser.

 Note:

 before the first Control Connection on the Stream Connection shell/browser the
server sends some probe messages;

 realtime updates concern 15 items (1..15):

 realtime updates are in the following format (table = 2 is the assigned table number):

 2,2|19,63|13:22:40|22,0|30500|19,61|19,63|88000||||

 the length of the received pipe-separated string is the same as the field schema
length.

5.2.2 Double subscription
In this test two items will be subscribed to in different tables (table 1 and table 2).

 Stream Connection Creation:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/create_session.txt?
LS_op2=create&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_adapter_set=WELCOME&LS_user= HTTP/1.0

 Send a blank line

 Server command: OK

 Server command: SessionId:S9cb4758037a95c01T0439915 (copy the
received value)

 (other Server headers, possibly including many Preamble lines)

 Via browser:

 Open the URL:
http://localhost:8080/lightstreamer/create_session.txt?
LS_op2=create&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_adapter_set=WELCOME&LS_user=

 Server command: OK

 Server command: SessionId:S9cb4758037a95c01T0439915 (copy the
received value)

 (other Server headers, possibly including many Preamble lines)

 Subscription#1:

 Via telnet:

- 37 -

http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS
_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_ch
ange+time&LS_mode=MERGE&LS_snapshot=true HTTP/1.0

 Send a blank line

 The server starts sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS
_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_ch
ange+time&LS_mode=MERGE&LS_snapshot=true

 The server starts sending realtime updates on the Stream Connection browser.

 Subscription#2:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS
_data_adapter=STOCKS&LS_id=item18&LS_schema=last_price+pct_c
hange+time&LS_mode=MERGE&LS_snapshot=true HTTP/1.0

 Send a blank line

 The server starts sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS
_data_adapter=STOCKS&LS_id=item18&LS_schema=last_price+pct_c
hange+time&LS_mode=MERGE&LS_snapshot=true

 The server starts sending realtime updates on the Stream Connection browser.

 Unsubscription#1:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
HTTP/1.0

 Send a blank line

 The server stops sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete

 The server stops sending realtime updates on the Stream Connection browser.

 Unsubscription#2:

 Via telnet:

 Execute: telnet localhost 8080

- 38 -

http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item18&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item18&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item18&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item18&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item18&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item18&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
HTTP/1.0

 Send a blank line

 The server stops sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete

 The server stops sending realtime updates on the Stream Connection browser.

 Note:

 realtime updates concern 1 item:

 realtime updates are in the following format (table = 1 or 2):

 2,1|6,55|-8,9|13:34:59

 1,1|15,81|-1,74|13:34:59

 the length of the received pipe-separated string is the same as the field schema
length.

5.2.3 Field schema change
In this test, one item will be subscribed to and then it will be re-subscribed to (within a different
Table) with a different field schema.

 Stream Connection Creation:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/create_session.txt?
LS_op2=create&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_adapter_set=WELCOME&LS_user= HTTP/1.0

 Send a blank line

 Server command: OK

 Server command: SessionId:S9cb4758037a95c01T0439915 (copy the
received value)

 (other Server headers, possibly including many Preamble lines)

 Via browser:

 Open the URL:
http://localhost:8080/lightstreamer/create_session.txt?
LS_op2=create&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_adapter_set=WELCOME&LS_user=

 Server command: OK

 Server command: SessionId:S9cb4758037a95c01T0439915 (copy the
received value)

 (other Server headers, possibly including many Preamble lines)

 Subscription#1:

 Via telnet:

- 39 -

http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS
_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_ch
ange+time&LS_mode=MERGE&LS_snapshot=true HTTP/1.0

 Send a blank line

 The server starts sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS
_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_ch
ange+time&LS_mode=MERGE&LS_snapshot=true

 The server starts sending realtime updates on the Stream Connection browser.

 Unsubscription#1:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
HTTP/1.0

 Send a blank line

 The server stops sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete

 The server stops sending realtime updates on the Stream Connection browser.

 Subscription#2:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS
_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+p
ct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_pric
e+open_price&LS_mode=MERGE&LS_snapshot=true HTTP/1.0

 Send a blank line

 The server starts sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS
_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+p
ct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_pric
e+open_price&LS_mode=MERGE&LS_snapshot=true

 The server starts sending realtime updates on the Stream Connection browser.

 Unsubscription#2:

- 40 -

http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=QUOTE_ADAPTER&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
HTTP/1.0

 Send a blank line

 The server stops sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete

 The server stops sending realtime updates on the Stream Connection browser.

 Note:

 realtime updates concern 1 item:

 the first time, realtime updates are in the following format (table = 1):

 1,1|15,81|-1,74|13:34:59

 the first time, the length of the received pipe-separated string is the same as the
“last_price pct_change time” field schema length.

 the second time, realtime updates are in the following format (table = 2):

 2,2|19,63|13:22:40|22,0|30500|19,61|19,63|88000||||

 the second time, the length of the received pipe-separated string is the same as the
“last_price time pct_change bid_quantity bid ask ask_quantity min max ref_price
open_price” field schema length.

5.2.4 Snapshot synchronization
In this test one item will be subscribed to in one table with the Snapshot synchronization mode
(see section 2.6, External Snapshots).

 Stream Connection Creation:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/create_session.txt?
LS_op2=create&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_adapter_set=WELCOME&LS_user= HTTP/1.0

 Send a blank line

 Server command: OK

 Server command: SessionId:S9cb4758037a95c01T0439915 (copy the
received value)

 (other Server headers, possibly including many Preamble lines)

 Via browser:

 Open the URL:
http://localhost:8080/lightstreamer/create_session.txt?
LS_op2=create&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_adapter_set=WELCOME&LS_user=

 Server command: OK

- 41 -

http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete

 Server command: SessionId:S9cb4758037a95c01T0439915 (copy the
received value)

 (other Server headers, possibly including many Preamble lines)

 Subscription:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add_si
lent&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price
+pct_change+time&LS_mode=MERGE HTTP/1.0

 Send a blank line

 The server only sends probe messages on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add_si
lent&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price
+pct_change+time&LS_mode=MERGE

 The server only sends probe messages on the Stream Connection browser.

 Reception start:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=start
HTTP/1.0

 Send a blank line

 The server starts sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=start

 The server starts sending realtime updates on the Stream Connection browser.

 Unsubscription:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
HTTP/1.0

 Send a blank line

 The server stops sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete

 The server stops sending realtime updates on the Stream Connection browser.

- 42 -

http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=start
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=start
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=start
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=start
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add_silent&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add_silent&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add_silent&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add_silent&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add_silent&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add_silent&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE

 Note:

 no realtime update is sent before the start command;

 realtime updates concern 1 item;

 realtime updates are in the following format (table = 1):

 1,1|15,81|-1,74|13:34:59

 the length of the received pipe-separated string is the same as the “last_price
pct_change time” field schema length.

5.2.5 Multiple subscriptions of the same item
In this test we will subscribe to the same item in two different Tables (with different field schemas).

 Stream Connection Creation:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/create_session.txt?
LS_op2=create&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_adapter_set=WELCOME&LS_user= HTTP/1.0

 Send a blank line

 Server command: OK

 Server command: SessionId:S9cb4758037a95c01T0439915 (copy the
received value)

 (other Server headers, possibly including many Preamble lines)

 Via browser:

 Open the URL:
http://localhost:8080/lightstreamer/create_session.txt?
LS_op2=create&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_adapter_set=WELCOME&LS_user=

 Server command: OK

 Server command: SessionId:S9cb4758037a95c01T0439915 (copy the
received value)

 (other Server headers, possibly including many Preamble lines)

 Subscription#1:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS
_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_ch
ange+time&LS_mode=MERGE&LS_snapshot=true HTTP/1.0

 Send a blank line

 The server starts sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS

- 43 -

http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=
http://localhost:8080/lightstreamer/create_session.txt?LS_adapter_set=WELCOME&LS_user=

_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_ch
ange+time&LS_mode=MERGE&LS_snapshot=true

 The server starts sending realtime updates on the Stream Connection browser.

 Subscription#2:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS
_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+p
ct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_pric
e+open_price&LS_mode=MERGE&LS_snapshot=true HTTP/1.0

 Send a blank line

 The server starts sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS
_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+p
ct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_pric
e+open_price&LS_mode=MERGE&LS_snapshot=true

 The server starts sending realtime updates on the Stream Connection browser.

 Unsubscription#1:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
HTTP/1.0

 Send a blank line

 The server stops sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete

 The server stops sending realtime updates on the Stream Connection browser.

 Unsubscription#2:

 Via telnet:

 Execute: telnet localhost 8080

 Send command: GET /lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
HTTP/1.0

 Send a blank line

 The server stops sending realtime updates on the Stream Connection shell.

 Via browser:

 Open the URL: http://localhost:8080/lightstreamer/control.txt?
LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete

- 44 -

http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=delete
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=QUOTE_ADAPTER&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=QUOTE_ADAPTER&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=2&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+time+pct_change+bid_quantity+bid+ask+ask_quantity+min+max+ref_price+open_price&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true
http://localhost:8080/lightstreamer/control.txt?LS_session=S9cb4758037a95c01T0439915&LS_table=1&LS_op=add&LS_data_adapter=STOCKS&LS_id=item2&LS_schema=last_price+pct_change+time&LS_mode=MERGE&LS_snapshot=true

 The server stops sending realtime updates on the Stream Connection browser.

 Note:

 realtime updates concern 1 item in three different tables:

 realtime updates are in the following format (table = 1 or 2):

 1,1|16,72|3,91|13:55:21

 2,1|16,72|13:55:21|3,91|5500|16,71|16,72|98000||16,72||

 2,1|16,8|13:55:22|4,41|88000|16,77|16,8|52500||16,8||

 the length of the received pipe-separated string for Table 1 is the same as the related
field schema (“last_price pct_change time”) length.

 the length of the received pipe-separated string for Table 2 is the same as the related
field schema (“last_price time pct_change bid_quantity bid ask ask_quantity min max
ref_price open_price”) length.

 realtime updates are duplicated.

- 45 -

	1 Introduction
	2 General workflow
	2.1 HTTP Requests
	2.1.1 HTTP vs. HTTPS
	2.1.2 GET method vs. POST method
	2.1.3 Lightstreamer Server behind a Load Balancer

	2.2 Subscriptions and unsubscriptions
	2.3 Stream Connection, Control Connections and Polling connections
	2.4 Data reception workflows
	2.4.1 Basic workflow
	2.4.2 Double subscription
	2.4.3 Field schema change

	2.5 Content-Length management
	2.6 External Snapshots

	3 Subscription Management
	3.1 Basic concepts

	4 The Text Mode protocol
	4.1 Creating the Stream Connection
	4.2 Binding to an existing Session
	4.3 Control connections
	4.3.1 Subscription Control Connections
	4.3.2 Item Groups and Field Schemas
	4.3.3 Subscription reconfiguration Control Connections
	4.3.4 Session constraints Control Connections
	4.3.5 Asynchronous request for session rebind Control Connections
	4.3.6 Session asynchronous destroy Control Connections
	4.3.7 Batching of Control Requests

	4.4 Sending Messages
	4.4.1 Synchronous version
	4.4.2 Asynchronous version

	4.5 Push Contents
	4.5.1 Update messages
	4.5.2 End-of-Snapshot messages
	4.5.3 Overflow messages
	4.5.4 Asynchronous Send Message outcome messages
	4.5.5 Probe messages
	4.5.6 End messages
	4.5.7 Loop messages
	4.5.8 Push error messages

	5 Tests and Examples
	5.1 Test environment
	5.2 Table (i.e. Subscription) management
	5.2.1 Basic workflow
	5.2.2 Double subscription
	5.2.3 Field schema change
	5.2.4 Snapshot synchronization
	5.2.5 Multiple subscriptions of the same item

